

Morphological characterization of Brinjal genotype of Assam using multivariate analysis

Bendangla Imsong^a, Akashi Sarma^b, Dibosh Bordoloi^{c*}, Sailen Gogoi^d, Moatoshi Jamir^e and Harendra Verma^e

^aKrishi Vigyan Kendra, Dimapur, ICAR Nagaland Centre, Medziphema-797106, Nagaland, India
^bDepartment of Plant Breeding and Genetics, Assam Agricultural University, Jorhat-785013, Assam, India
^cAssam Agricultural University-Zonal Research Station, Karimganj-788712, Assam, India
^dDepartment of Horticulture, Assam Agricultural University, Jorhat-785013, Assam, India
^eICAR Research Complex for NEH Region, Nagaland Centre, Medziphema-797106, Nagaland, India

ABSTRACT

The experiment was carried out to evaluate the genetic diversity, correlation, and path coefficient analysis between twenty-three brinjal genotypes during the summer season of 2019 at Horticultural Research Farm, Assam Agricultural University. The twenty-three brinjal genotypes were grown in randomized complete block design with three replications. The analyses of variance revealed significant variation at a genotypic level for all the sixteen characters except one i.e, fruit length which indicates that the genotypes are diverged genetically. Longai oblong (G3) genotype has shown the maximum yield per plant, which may be due to the highest number of primary branches. From the path coefficient analysis, it was found that the highest positive direct effect was of days to 50% fruiting (1.100), followed by days to first fruiting (0.263), fruit volume (0.217), days to 50% flowering (0.199) and fruit pedicel length (0.190). For these characters, direct selection would be useful in crop improvement. Based on D^2 analysis the twenty-three genotypes were grouped into 5 clusters. The inter-cluster D^2 value was observed to be maximum (329.67) between clusters III and IV followed by between cluster I and IV with D^2 value of 284.76. This is indicative of diverse clusters which can be utilized for producing superior heterotic combinations. The values of the PCs explained all the characters influencing about 77.6% of the genotypic variability, while the first two PCs explained 58.8% of the variability. Based on the relationship of characters and genotypes to the PC 1, it can be concluded that the genotypes G3, G5, G7, G10, and G19 can be selected for breeding purposes in the brinjal improvement program for the Assam condition.

Keywords- Genotype, Heritability, D-square, Path analysis, Principle component, brinjal

Introduction

Vegetables are good sources of vitamins, carbohydrates, proteins, and minerals. Consuming vegetables improves the overall well-being of a person. They have various health benefits. Since vegetables are rich in antioxidants and phytochemicals, they help in controlling inflammation. The other benefits include improved blood pressure, better eyesight, good skin, reduced risk of heart disease, cancer, and increased immunity. Brinjal (Solanum melongena L.), which hails from the nightshade family of plants is rich in fiber and low in calories. This helps in regulating blood sugar levels and controls the absorption of glucose. A study has found that phenolics present in the brinjal act as inhibitors of enzymes involved with type 2 diabetes [1]. Brinjals are said to possess antioxidant properties that promote a healthy heart [2]. Several studies have shown the anti-cancer benefit of brinjal. One such study by Cham (2011) has found the presence of solasodine rhamnosyl glycosides (SRGs) in brinjal peel which is believed to treat skin cancer. Other benefits of brinjal include improved cognitive function, skin health, aid in weight loss, promote eye health, enhanced bone health, treat Anemia and prevent birth defects. Apart from the health benefits to the consumers, brinjal

ARTICLE HISTORY

17 October 2022: Received 06 February 2023: Revised 24 April 2023: Accepted 12 July 2023: Available Online

DOI:

https://doi.org/10.61739/TBF.2023.12.2.234

CORRESPONDING AUTHOR: Dibosh Bordoloi

E-MAIL ID: dibosh.bordoloi@aau.ac.in

COPYRIGHT:

© 2023 by the authors. The license of Theoretical Biology Forum. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons org/licenses/by/4.0/).

is a boon to the growers as well. From a farmer's perspective, in comparison to field crops, vegetable farming is a promising venture. This is so because vegetables are of very short duration that can be easily grown in diversified agro-climatic conditions. The income generated is also comparatively high. As per the National nutrition guidelines 'recommendation, a person should consume on average, 300 g of vegetables daily. Therefore, cultivating brinjal which is considered as a superfood can earn huge returns for the farmers. Brinjal is a vegetable crop where one can find immense diversity in its morphological characteristics. There is variation in the number of seeds a brinjal fruit contains, plant stature, the colour of the leaves, flowers, fruits, the shape, color distribution of the fruit etc. In India, we will find diversified varieties of brinjal differing in size, shape, and color of fruits [3]. India is the center of origin for the brinjal crop and with the existing variations in the brinjal crop opens up avenues for crop improvement for any stakeholders plant breeders, agricultural institutes, seeds companies, etc. Despite the prospects of brinjal having economic as well as nutritional importance, the efforts in brinjal breeding are still inadequate. And because of this reason, its production is lower

in comparison with other solanaceous crops [4]. For increasing productivity, the first and foremost objective of brinjal is to develop high-yielding varieties. Keeping all these in view, the present investigation was carried out with the objective study variability analysis for the traits adaptive to the summer season.

Material and Methods

The experiment was carried out to evaluate the genetic diversity, correlation, and path coefficient analysis between twenty-three brinjal genotypes (Table 1) during the summer season of 2019 at Horticultural Research Farm, Assam Agricultural University, Jorhat is situated at an altitude of 116 above mean sea level, 26.7509° North latitude and 94.2037° east longitude. The experimental area was quite uniform in respect of topography and fertility. The twenty-three brinjal genotypes were grown in a randomized complete block design with three replications (Table 1). Each genotype was planted in five rows of 1.5-meter length spaced 20 cm apart with one seedling per hill. Gap filling was done within a week in order to maintain a uniform plant population. A fertilizer dose of 60 kg N, 20 kg P_2O_5 , and 40 kg K_2O was applied as per recommendation for *Kharif* rice. The entire dose of P_2O_5 and K_2O along with half dose of N was applied as basal dose at the time of final field preparation; the remaining amount of nitrogen was applied in two equal splits and was applied at the time of active growth stages. Standard agronomic practices were adopted for normal crop growth. The following observations were plant Height (cm), plant spread (cm), number of primary branches per plant, leaf blade length, leaf blade width, days to first flowering, days to 50% flowering, days to first fruiting, days to 50% fruiting, fruit pedicel length (cm), fruit length (cm), fruit circumference (cm), fruit volume (cc), number of fruits per plant, fruit weight (g) and fruit yield per plant (kg) recorded on five randomly chosen plants of each genotype per replication.

Statistical analyses

Analysis of variance for the traits was done considering replication and genotype as fixed effects [5] in MS Excel 2007. Genetic parameters were estimated by the formula given by Burton, 1952 for GCV and PCV, Hanson, Robinson, and Comstock (1956) for heritability, and Allard (1960) for expected genetic advance as percent of mean in MS Excel 2007. Mahalanobis D^2 and PCA analysis was done using 'R' software.

Result and Discussion

ANOVA

The analyses of variance which are presented in Tables 2a and 2b revealed significant variation at a genotypic level for all the sixteen characters except one i.e, fruit length which indicates that the genotypes have diverged genetically. Considerable variation in eggplant germplasm has been reported in studies by [6, 7 & 8].

Mean performance

Means regarding yield and yield attributing traits and their comparison are given in Tables 3a and 3b. The present result revealed that plant height was highly significantly affected due to various brinjal genotypes. The plant height ranged from 48.08 to 70.98 cm. The genotype SLL was found lowest plant height, whereas genotype JC1 had the highest plant height. The genotype LLP showed the early flowering and Tezpur local showed the late flowering. The number of branches is the most important yield component in brinjal. The effective and fruitbearing branches play an important role in enhancing the final yield. The number of primary branches varies from genotype to genotype depending upon the genetic potential of a genotype. In the present study the number of branches was significantly affected by the various genotypes. The highest branches (9.31) were produced by Longai oblong followed by Green Streaked (9.11), KB4 (8.92), and HRS4 (8.46). Similarly, MLC-1 and Naboneeta had shown very poor performance by showing only 6.44 and 6.51, primary branches per plant respectively. The highest fruit bearing genotype was KB 4. The highest fruit length (22.13 cm) was found in Longai Long. Fruit weight is an important yield parameter and is vary from genotype to genotype. KB-4 genotype showed the highest fruit weight (152.24 g). Longai oblong genotype has shown the maximum yield per plant, which may be due to the highest number of primary branches.

Genetic Parameters

Data on range, mean, GCV, PCV, Heritability, and Genetic Advance for 17 traits in 33 eggplant genotypes are presented in Table 4. It has been observed that the range for all the characters implies the incidence of diversified genotypes. The characters under study have shown that the three highest range of variability were of fruit volume (16.67 - 179.78 cc), fruit weight (29.52 – 152.24 g) and fruit yield per plant (1.35 – 3.98 kg). A sound awareness of genetic variability which is present in a population is essential for the successful development of quantitative traits. The characters with great variability have more scope for further improvement [9]. The genotypic coefficient of variability ranged from 6.65% (Number of primary branches per plant) to 42.66% (Fruit volume). High estimates of GCV were recorded for fruit volume (42.66%), fruit weight (38.44%), fruit yield per plant (32.32%), plant spread (26.90%), fruit circumference (25.89%), and number of fruits per plant (24.74%). Similar results were observed by [10] for number of fruits per plant, [11] for fruit weight, and [12] for a number of fruits per plant, fruit circumference and fruit yield per plant. The range of the phenotypic coefficient of variability (PCV) was from 7.35% (Days to 50% fruiting) to 44.96% (Fruit volume). High estimates of PCV were observed for eight characters which were fruit volume (44.96%), fruit weight (42.36%), fruit yield per plant (36.58%), plant spread (31.35%), fruit circumference (30.72%), number of fruits per plant (26.44%), fruit length (24.93%) and fruit pedicel length (20.87%). High PCV for the number of fruits per plant was also reported by [10 & 12]. Evaluation of variability factors revealed that there was lot of variation present among the genotypes studied. The value of the phenotypic coefficient of variation (PCV) was found to be higher than the genotypic coefficient of variation (GCV) for all the characters studied in the present study, which is indicative of the considerable influence of environmental factors on the performance of genotypes. Similar results were also reported in Brinjal by [13, 14 & 15].

Both high GCV and PCV were manifested by fruit volume, fruit weight, fruit yield per plant, plant spread, fruit circumference and number of fruits per plant which is suggestive of greater variability for these traits which were governed by additive genes and also indicative that the parents chosen on the basis of these characters may be further utilized in crossing program for acquiring superior transgressive segregants. In the present study, broad sense heritability was found high for all the characters except for fruit pedicel length (60%), leaf blade width (37%), and leaf blade length (48%) which were found to be moderate heritability and plant height (36%), fruit length (16%) which was observed to be with low heritability. The

characters which manifested high heritability were fruit volume (90%), days to 50% flowering (88%), number of fruits per plant (87%), days to first flowering (86%), days to first fruiting (85%), fruit weight (82%), days to 50% fruiting (80%), fruit yield per plant (78%), plant spread (73%), fruit circumference (71%). High heritability for a number of fruits per plant, fruit weight, and fruit yield per plant were also reported earlier by [16, 17 & 18]. High heritability is indicative of the low influence of environmental factors on the expression of the traits which allows breeders to select a genotype for further improvement program [19]. Genetic advance refers to the degree of gain obtained in a character under the circumstances of specified selection pressure. In crop improvement programs, high heritability does not all the time show evidence of high genetic advance. It is the high heritability estimates with high genetic advance together that render the most appropriate condition for selection [20]. In the present investigation, high heritability coupled with high genetic advance was observed for the traits, plant spread, fruit circumference, number of fruits per plant, fruit weight, fruit volume and fruit yield per plant. Several earlier reports also recorded high heritability and high genetic advance estimates for a number of fruits per plant, and fruit weight which is akin to the present findings [12, 16 & 21]. These results are suggestive of the presence of additive genes in the traits and support reliable crop improvement through a selection of those traits.

Character interrelationship

In any breeding program, it is a prerequisite to understanding the magnitude of genetic variability of yield contributing attributes, association between them and their relation with yield. The nature and extent of the association between yield and its component traits are essential for reasonable selection in advance generations. Linkage of genes or pleiotropy of genes is responsible for correlations between character pairs and thus, selection of one trait greatly influences the other linked or pleiotropically affected traits. The correlation coefficient also helps to identify characters with little or no importance in the selection program [22]. The Pearson correlation coefficients among the 17 characters are presented in Figure 1. The current study revealed that the characters Plant height (0.685), Plant Spread (0.447), Number of primary branches per hill (0.570), Leaf blade length (0.536), number of fruits per plant (0.462) and fruit weight (0.644) exhibited significant positive correlation with fruit yield plant⁻¹. Maximum significant negative correlation with fruit yield plant-1 was revealed in days to first flowering (-0.821), days to 50% flowering (-0.834) and days to 50% fruiting (-0.787). The results were in close harmony with Patel et al. (2015).

Path coefficient analysis

The path coefficient analysis is presented in Table 5 Through the path coefficient analysis, it was found that the highest positive direct effect was of days to 50% fruiting (1.100), followed by days to first fruiting (0.263), fruit volume (0.217), days to 50% flowering (0.199) and fruit pedicel length (0.190). The positive direct effect of fruit length was also studied by [23] and days to first flowering, fruit length on yield by [24]. For these characters, the direct selection would be useful in crop improvement given that most of these characters were observed to have a positive coefficient of correlation in improving the fruit yield per plant. Similar results in brinjal have also been reported by [9, 25 & 26]. The residual effect was observed to be 0.0329 which indicates

that 99.96% variation had been examined. It further indicated that some other factors which have not been considered in this study contributed to fruit yield and hence, besides the characters under study, other traits may also be considered during the selection of genotypes for high yield.

Genetic Diversity

In the present study, the twenty-three genotypes of brinjal were subjected to genetic divergence analysis where significant difference for the characters was observed. The analysis of variance for dispersion and Wilk's test is presented in Table 6. The value of 'V' statistics which was estimated through Wilk's test exhibited significant differences among the genotypes for all the sixteen characters. The twenty-three genotypes were grouped into 5 clusters (Table 7) based on the relative magnitude of D² statistics and using Tocher's method given by [27]. The genotypes were grouped into the various clusters in such a manner that genotypes within each cluster had smaller D2 statistic than in another cluster. Clustering pattern revealed that among all the five clusters, cluster I was observed to consist of a maximum number of genotypes (12). Clusters II and III had equal number of genotypes ie., four. While cluster IV had two Genotypes, cluster V was a solitary cluster with only one genotype. Genotype in solitary cluster signifies the uniqueness of that genotype for the majority of the traits. Using the genotype in the hybridization program will ensure breeding material with high diversity. Similar studies were done by [28, 29 & 30] in brinjal.

The intra and inter-cluster D² values was studied in the present investigation and presented in Table 8 The intra-cluster D² values portray the variation among the genotypes within the same cluster. It was for cluster IV (109.55) that the highest intracluster distance was observed, followed by cluster III (72.07), cluster I (55.53) and cluster II (53.62). Higher intra-cluster distance shows the existence of some diversity within the genotypes of the same cluster. Similar intra-cluster variation was also reported by [31, 32 & 33]. In order to maintain the broad genetic base, it is resourceful to evade using genotypes of the same cluster as parents during the hybridization program. The inter-cluster D² value was observed to be maximum (329.67) between clusters III and IV followed by between cluster I and IV with D² value of 284.76. This is indicative of diverse clusters which can be utilized for producing superior heterotic combinations as recommended by [34]. The crossing between superior genotypes of the above diverse cluster pairs (i.e. between cluster III and IV and between I and IV) may provide desirable transgressive segregants for developing highyielding varieties.

The cluster means data with regard to five clusters inclusive of all the 16 characters are presented in Table 9. Superior cluster was the cluster whose character's average mean was found better than the others. Cluster II was found to be superior to the rest of the clusters for the characters, plant spread (72.67), a number of primary branches per plant (8.65), leaf blade length (15.16), leaf blade width (7.93), fruit pedicel length (7.51), fruit weight (125.66), fruit yield per plant (3.69). The characters denoting the earliness such as days to first flowering (57.50), days to 50 % flowering (65.50), days to first fruiting (64.84), days to 50% fruiting (73.00) were obtained in cluster IV with the lowest mean. Cluster IV also showed superiority in respect to the characters, fruit length (19.76), and fruit volume (144.73). Cluster V was found to be superior for the characters, plant height (62.74), and fruit circumference (20.70). The percent

contribution of the sixteen characters was presented in Table 9. The preference of the parents and their selection in crop improvement primarily depends on the contribution of the characters to divergence. In the present investigation, the highest contribution percent was manifested for days to 50% flowering (46.70%) followed by days to first flowering (39.60%) and fruit volume (3.76%). The genotype, *Longai Purple Long* was recorded for the least mean to days to first flowering (56.67), 50% flowering (64.67) and fruit volume (179.78) and therefore can be used as a parent in the hybridization program.

Principle component analysis

Principal Component Analysis (PCA) is a powerful tool in modern data analysis because it is a simple, non-parametric method for extracting relevant information from confusing data sets. With minimal effort, PCA provides a roadmap for how to reduce a complex data set to a lower dimension to reveal the sometimes hidden, simplified structures that often underlie it. It reduces the dimensionality of the data while retaining most of the variation in the data set. PCA accomplishes this reduction by identifying directions, called principal components (PCs), along which the variation in the data is maximal [35]. In the present investigation, PCA was performed for 23 brinjal genotypes and presented in Table 10. A total of 16 principal components (PCs) were obtained, but only four PCs that exhibited eigenvalues > 1 were measured as significant. The rest of the non-significant PCs (eigenvalue < 1) were not worthy of further interpretation. The values the PCs explained all the characters influencing about 77.6% of the genotypic variability, while the first two PCs explained 58.8% of the variability (Table 10 and Figure 2). Scree plot explained the percentage of variation associated with each principal component obtained by drawing a graph between eigenvalues and principal component numbers. The PC1 showed 40.9% variability with eigenvalue 6.54 which then declined gradually. An elbow type line is obtained which after 5th PC tended to straight with little variance observed in each PC. From the graph, it is clear that the maximum variation was observed in PC1 (Figure 3). PC 1 accounted for 40.9% of total variability and it was positively contributed by the characters fruit yield per plant (0.371), plant height (0.277), fruit weight (0.258), leaf blade length (0.221), number of Primary branches per plant (0.220) and number of fruits per plant (0.207) while days to 50% flowering (-0.363), days to first flowering (-0.360), days to first fruiting (-0.359) and days to 50% fruiting (-0.354)contributed negatively. PC 2 accounted for 17.9% of the total variability. The positively related traits were leaf blade width (0.506), plant spread (0.314), no of primary branches per plant (0.282), fruit circumference (0.272), fruit volume (0.269) and number of fruits per plant (-0.338) were negatively related to PC 2. PC 3 contributed 10.6% to total variability and the characters plant spread (0.353), number of fruits per plant (0.353), and fruit volume (-0.597) contributed to PC 3's positive and negative respectively. PC 4 contributed 8.2% total variance. The characters namely plant height, plant spread, number of primary branches per plant, number of fruits per plant, and fruit volume together in different principal components. Thus, the prominent characters placed together in different principal components and explaining the variability have the tendency to remain together [36]. This may be taken into consideration during the utilization of these characters in the brinjal breeding program. The length of the vector is based on the contribution of the character to the principal component (Figure 2). Moreover,

the angle of the character vectors is reflecting the correlation of variables. If the angle between two trait vectors is 90 (an obtuse angle), indicates a positive correlation. The two vectors in the 2nd quadrant viz., fruit circumference, plant spread, number of primary branches per plant, leaf blade length, fruit weight, and fruit yield per plant were highly correlated variables. Similarly, the vectors in 1st quadrant days to first flowering, days to 50% flowering, days to first fruiting, and days to 50% fruiting were highly correlated variables. These tan variables are also strongly correlated with the first principal component by the factor loading values. If the angle between two traits is >90 (an obtuse angle), indicates a negative correlation While if the angle is equivalent to 90 indicates that no correlation between the characters. It concluded that by comparing the tan genotypes, the genotypes G3, G5, G7, G10 and G19 were superior genotypes and had positive interaction with the character's fruit circumference, plant spread, number of primary branches per plant, leaf blade length, fruit weight, and fruit yield per plant. Genotypes with a high positive principal component score for PC 1 were G22 (1.519) followed by G10 (1.346), G3 (1.333), G7 (1.259), and G19 (1.031) (Table 11). Solaiman et al. (2014) reported that fruit width, fruit weight, and fruit yield per plant were important traits contributing to the divergence of the genotypes. While [37] concluded that in eggplant plant height, fruit length and fruit diameter should be kept average to obtain maximum fruit yield. The role of fruit yield in eggplant was more important in genetic divergence [38]. Overall, it was observed that fruit circumference, plant spread, number of primary branches per plant, leaf blade length, fruit weight, fruit yield per plant, days to first flowering, days to 50% flowering, days to first fruiting and days to 50% fruiting had high influence on the PC 1 and the genotypes G3, G5, G7, G10 and G19 had high principal component score for PC 1. Based on the relationship of characters and genotypes to the PC 1, it can be concluded that the genotypes G3, G5, G7, G10, and G19 can be selected for above said characters for breeding purposes in the brinjal improvement program for Assam condition.

Conclusions

The clustering pattern of D^2 analysis of twenty-three brinjal genotypes also confirmed the quantum of diversity present in the brinjal germplasm of Assam and offer scope for its exploitation through breeding for yield improvement. PCA helps us to identify the traits which have a great impact in the phenotype of different landraces of brinjal, and this is very much important in the selection procedure of the breeding program. Overall, it was observed that fruit circumference, plant spread, number of primary branches per plant, leaf blade length, fruit weight, fruit yield per plant, days to first flowering, days to 50% flowering, days to first fruiting, and days to 50% fruiting had high influence on the PC 1 and the genotypes G3, G5, G7, G10 and G19 had high principal component score for PC 1. Based on the relationship of characters and genotypes to the PC 1, it can be concluded that the genotypes G3, G5, G7, G10, and G19 can be selected for above said characters for breeding purposes in the brinjal improvement program for Assam condition.

Acknowledgments

The authors acknowledge the financial support from the Directorate of Post Graduate Studies, Assam Agricultural University. Furthermore, we gratefully acknowledge the support provided by the Department of Plant Breeding and Genetics, Assam Agricultural University. The authors are also grateful to Horticulture Research Station, Assam Agricultural University for providing seeds of brinjal genotypes used in the present research.

Author Contribution

Study Design: A.S. and S.G.; Data collection: B.I.; Manuscript draft preparation: B.I. and D.B.; Data Analysis: D.B. and H.V.; Data interpretation: B.I.; D.B and M.J.; Manuscript review: A.S.; S.G.; and D.B.; Supervision: A.S. and S.G.

[Bendangla Imsong: B.I., Akashi Sarma: A.S., Dibosh Bordoloi: D.B., Sailen Gogoi: S.G., Moatoshi Jamir: M.J. and Harendra Verma: M.J.]

Conflict of interest

The authors declare that they have no conflict of interest related to the subject of research.

Table 1: Name of the genotypes and the source

Entry Number	Name of the Entry	Source
G1	Green Streaked	HRS, Kahikuchi, AAU, Jorhat
G2	Singimari Local Long (SLL)	Dept. of Horticulture , AAU, Jorhat
G3	Longai Oblong	HRS, Kahikuchi, AAU, Jorhat
G4	Longai Long	HRS, Kahikuchi, AAU, Jorhat
G5	HRS 4	HRS, Kahikuchi, AAU, Jorhat
G6	Hashim Local	HRS, Kahikuchi, AAU, Jorhat
G7	Balijana	HRS, Kahikuchi, AAU, Jorhat
G8	ABB5(1)	Dept. of Horticulture , AAU, Jorhat
G9	ABB5(2)	Dept. of Horticulture , AAU, Jorhat
G10	KB4	HRS, Kahikuchi, AAU, Jorhat
G11	Tezpur Local	Tezpur, Assam
G12	MZ1	Mizoram
G13	Barpeta	HRS, Kahikuchi, AAU, Jorhat
G14	Naboneeta	Dept. of Horticulture , AAU, Jorhat
G15	M1	HRS, Kahikuchi, AAU, Jorhat
G16	M2	HRS, Kahikuchi, AAU, Jorhat
G17	ML2	HRS, Kahikuchi, AAU, Jorhat
G18	Longai Purple Oblong (LOP)	HRS, Kahikuchi, AAU, Jorhat
G19	Longai Purple Long (LLP)	HRS, Kahikuchi, AAU, Jorhat
G20	Manipur Local -1 (MLC-1)	HRS, Kahikuchi, AAU, Jorhat
G21	Manipur Local -3 (MLC-3)	HRS, Kahikuchi, AAU, Jorhat
G22	JC1	HRS, Kahikuchi, AAU, Jorhat
G23	Green Streaked	HRS, Kahikuchi, AAU, Jorhat

 Table 2a.Analysis of variance for different morphological traits in the 23 genotypes of brinjal

Source of Variations	df	Plant Height (cm)	Plant Spread (cm)	Number of Primary Branches Per Plant	Leaf Blade Length (cm)	Leaf Blade Width (cm)	Days to First Flowering	Days to 50% Flowering	Days to First Fruiting
Replicates	2	12.60	168.39	0.54	30.86 **	2.99	9.23	8.54	5.06
Genotype	22	102.43 *	712.86 **	1.75 *	12.54 **	2.88 *	89.57 **	105.34 **	89.39 **
Error	44	37.69	75.89	0.97	3.28	1.04	4.35	4.23	4.92
C.V.		10.89	16.08	12.79	13.73	15.13	3.21	2.80	3.05

* - Significant at 5% level, **- Significant at 1% level

${\it Table \, 2b. Analysis \, of \, variance \, for \, different \, morphological \, traits \, in \, the \, 23 \, genotypes \, of \, brinjal}$

Source of Variations	df	Days to 50% Fruiting	Fruit Pedicel Length (cm)	Fruit Length (cm)	Fruit Circumference (cm)	Number of Fruits Per Plant	Fruit Weight (g)	Fruit Volume (cc)	Fruit Yield Per Plant (kg)
Replicates	2	6.83	0.96	16.96	5.19	7.35	176.63	19.16	0.05
Genotype	22	91.99**	4.37 **	20.87	41.78 **	526.21 **	3693.33 **	3764.68 **	2.25 **
Error	44	6.87	0.78	13.08	5.01	23.71	245.98	134.09	0.19
C.V.		3.24	13.09	22.77	16.55	9.31	17.79	14.20	17.15

*-Significant at 5% level, **-Significant at 1% level

Table 3a: Comparative Mean performance for yield and yield related traits of 23 genotypes**lower case letter are significant different based on Tukey's honestly test

Conotimo	Plant Height	Plant Spread	Number of Primary	Leaf Blade	Leaf Blade	Days to First	Days to 50%	Days to First
Genotype	(cm)	(cm)	Branches Per Plant	Length (cm)	Width (cm)	Flowering	Flowering	Fruiting
Green Streaked	56.43 ^{ab}	91.69ª	9.11ª	14.96 ^{abc}	7.79ª	64.00 ^{bcd}	72.00 ^{bcd}	71.33 ^{bcde}
SLL	48.08 ^b	62.48 ^{bcde}	7.31ª	13.4 ^{abc}	7.39 ^a	70.33 ^{ab}	79.33ª	78.33ª
Longai Oblong	63.24 ^{ab}	62.34 ^{bcde}	9.31ª	14.36 ^{abc}	7.73ª	60.33 ^{de}	68.33 ^{de}	68.67 ^{def}
Longai Long	54.31 ^{ab}	74.94 ^{abc}	7.91 ^a	11.96 ^{abc}	6.70ª	58.33 ^{de}	66.33 ^{de}	65.67 ^{ef}
HRS 4	63.58 ^{ab}	77.48 ^{ab}	8.46 ^a	16.25 ^{ab}	8.60ª	67.00 ^{abc}	75.00 ^{abc}	74.33 ^{abcd}
Hashim Local	52.48 ^{ab}	43.60 ^{efgh}	7.55ª	10.41°	6.31ª	70.33 ^{ab}	79.33ª	78.00 ^{ab}
Balijana	63.38 ^{ab}	59.15 ^{bcdef}	7.73 ^a	15.05 ^{abc}	7.58ª	58.00 ^{de}	66.00 ^{de}	65.67 ^{ef}
ABB5(1)	54.57 ^{ab}	62.15 ^{bcde}	7.42ª	15.55 ^{abc}	8.33ª	69.00 ^{ab}	78.00 ^{ab}	76.33 ^{ab}
ABB5(2)	55.20 ^{ab}	54.13 ^{bcdefgh}	8.31ª	14.23 ^{abc}	6.34 ^a	69.00 ^{ab}	78.00 ^{ab}	76.67 ^{ab}
KB4	52.70 ^{ab}	73.72 ^{abcd}	8.92 ^a	13.97 ^{abc}	6.94 ^a	58.33 ^{de}	66.33 ^{de}	66.67 ^{ef}
Tezpur Local	52.26 ^{ab}	46.57 ^{defgh}	7.31ª	13.54 ^{abc}	7.36ª	71.33ª	80.33ª	78.33ª
MZ1	48.75 ^b	50.34 ^{bcdefgh}	7.53ª	15.64 ^{abc}	8.43ª	69.67 ^{ab}	78.67ª	77.00 ^{ab}
Barpeta	63.98 ^{ab}	57.07 ^{bcdefg}	6.76ª	11.38 ^{abc}	5.71ª	59 ^{de}	67.00 ^{de}	66.67 ^{ef}
Naboneeta	55.03 ^{ab}	$51.24^{bcdefgh}$	6.51ª	11.76 ^{abc}	5.94 ^a	70.67ª	79.67ª	77.67 ^{ab}
M1	55.04 ^{ab}	$51.95^{bcdefgh}$	7.60 ^a	10.43°	6.13ª	69.33 ^{ab}	78.33 ^{ab}	78.00 ^{ab}
M2	57.09 ^{ab}	53.43 ^{bcdefgh}	6.75ª	13.67 ^{abc}	5.65ª	61.67 ^{cde}	69.67 ^{cde}	69.00 ^{cdef}
ML2	51.28 ^b	32.28 ^{fgh}	7.20 ^a	10.33c	5.63ª	68.00 ^{abc}	77.00 ^{ab}	75.00 ^{abcd}
LOP	62.74 ^{ab}	28.87 ^h	7.66ª	13.18 ^{abc}	6.74ª	58.00 ^{de}	66.00 ^{de}	66.00 ^{ef}
LLP	56.75 ^{ab}	41.50 ^{efgh}	7.80 ^a	14.19 ^{abc}	6.10 ^a	56.67°	64.67°	64.00 ^f
MLC-1	57.73 ^{ab}	46.34 ^{efgh}	6.44ª	11.41 ^{abc}	6.05ª	70.67ª	79.67ª	79.33ª
MLC-3	52.19 ^{ab}	48.33 ^{cdefgh}	7.89ª	10.87 ^{bc}	5.92ª	70.33 ^{ab}	79.33ª	77.67 ^{ab}
JC1	70.98ª	46.37 ^{defgh}	8.24 ^a	16.71ª	5.91ª	58.33 ^{de}	66.33 ^{de}	65.33 ^{ef}
SM-6-7	48.60 ^b	29.75 ^{gh}	7.51ª	10.24 ^c	5.49ª	68.33 ^{ab}	77.00 ^{ab}	75.67 ^{abc}

Table 3b: Comparative Mean performance for yield and yield related traits of 23 genotypes**lower case letter are significant different based on Tukey's honestly test

a	Days to 50%	Fruit Pedicel	Fruit Length	Fruit Circum.	Number of		Fruit Volume	Fruit Yield Per
Genotype	Fruiting	Length (cm)	(cm)	(cm)	Fruits Per Plant	Fruit Weight (g)	(cc)	Plant (kg)
Green Streaked	79.67 ^{bcde}	5.71°	13.99 ^{ab}	21.39ª	56.33 ^{bc}	119.38 ^{abc}	87.66 ^{cdef}	3.41 ^{abc}
SLL	87.67 ^{ab}	5.73°	17.48 ^{ab}	16.4 ^{abcd}	46.67 ^{bcde}	112.32 ^{abcd}	59.00 ^{defgh}	2.21 ^{bcdefg}
Longai Oblong	77.00 ^{de}	7.23 ^{bc}	17.30 ^{ab}	17.33 ^{abc}	48.00 ^{bcd}	146.04 ^{ab}	105.00 ^{bc}	3.98ª
Longai Long	73.33 ^e	6.91 ^{bc}	22.13ª	10.21 ^{def}	46.00 ^{bcde}	118.11 ^{abc}	109.67 ^{bc}	2.75 ^{abcdef}
HRS 4	82.33 ^{abcd}	10.84 ^a	14.23 ^{ab}	13.68 ^{bcdef}	48.33 ^{bcd}	115.61 ^{abc}	92.00 ^{bcde}	3.69ª
Hashim Local	87.00 ^{ab}	6.54 ^{bc}	15.51 ^{ab}	9.37 ^{def}	42.00 ^{cde}	79.47 ^{cdefg}	77.00 ^{cdefg}	1.98 ^{defg}
Balijana	74.00 ^e	6.24 ^{bc}	15.47 ^{ab}	17.39 ^{abc}	46.67 ^{bcde}	121.60 ^{abc}	92.55 ^{bcde}	3.66ª
ABB5(1)	84.33abc	6.17c	15.96 ^{ab}	15.05 ^{abcd}	42.00 ^{cde}	95.10 ^{cde}	102.67 ^{bc}	1.95 ^{defg}
ABB5(2)	84.67 ^{abc}	5.14 ^c	15.89 ^{ab}	7.97 ^{ef}	45.00 ^{bcde}	29.60 ^h	55.44 ^{fgh}	1.44 ^{fg}
KB4	75.00 ^{de}	5.73°	15.86 ^{ab}	14.97 ^{abcde}	82.00ª	152.24ª	45.00 ^{ghi}	3.66ª
Tezpur Local	86.67 ^{ab}	7.30 ^{bc}	16.1 ^{ab}	11.39 ^{cdef}	52.00 ^{bcd}	85.37 ^{cdef}	61.00 ^{defg}	1.88 ^{efg}
MZ1	85.00 ^{abc}	5.98°	19.97 ^{ab}	10.52 ^{cdef}	40.67 ^{de}	61.37 ^{efgh}	95.33 ^{bcd}	1.66 ^{efg}
Barpeta	75.00 ^{de}	6.63 ^{bc}	16.3 ^{ab}	11.66 ^{cdef}	75.33ª	111.50 ^{abcd}	16.67 ⁱ	2.88 ^{abcde}
Naboneeta	86.33 ^{ab}	7.60 ^{bc}	16.53 ^{ab}	15.94 ^{abcd}	51.67 ^{bcd}	37.67 ^{fgh}	102.33 ^{bc}	1.95 ^{defg}
M1	86.67 ^{ab}	6.90 ^{bc}	16.17 ^{ab}	14.06 ^{bcdef}	43.00 ^{bcde}	32.40 ^{gh}	63.33 ^{defg}	2.11 ^{cdefg}
M2	77.00 ^{cde}	6.26 ^{bc}	8.94 ^b	7.11 ^f	76.67ª	29.52 ^h	24.33 ^{hi}	2.88 ^{abcde}
ML2	83.00 ^{abcd}	6.44 ^{bc}	12.06 ^{ab}	10.86 ^{cdef}	55.33 ^{bcd}	76.76 ^{cdefgh}	58.33 ^{efgh}	1.74^{efg}
LOP	74.00 ^e	6.60 ^{bc}	14.9 ^{ab}	20.70 ^{ab}	57.33 ^b	79.79 ^{cdefg}	127.67 ^b	3.31 ^{abcd}
LLP	72.67 ^e	7.01 ^{bc}	17.23 ^{ab}	14.33 ^{bcde}	46.00 ^{bcde}	82.87 ^{cdef}	179.78ª	3.56 ^{ab}
MLC-1	88.00ª	6.48 ^{bc}	19.10 ^{ab}	13.55 ^{cdef}	50.00 ^{bcd}	74.73 ^{cdefgh}	90.00 ^{cdef}	1.61 ^{efg}
MLC-3	83.33 ^{abc}	5.52°	13.07 ^{ab}	11.81 ^{cdef}	32.00 ^e	97.33 ^{bcde}	104.33 ^{bc}	1.87 ^{efg}
JC1	73.00 ^e	8.97 ^{ab}	16.32 ^{ab}	9.92 ^{def}	77.33ª	105.46 ^{abcde}	46.33 ^{ghi}	3.48 ^{ab}
SM-6-7	83.33 ^{abc}	6.97 ^{bc}	14.71 ^{ab}	15.50 ^{abcd}	42.67 ^{bcde}	63.92defgh	80.11 ^{cdefg}	1.35g

Table 4: Genetic parameters for 16 characters of twenty three genotypes

Characters	General Mean	Range	GCV%	PCV%	Heritability h2(b.s)	GA as a percent of mean
Plant Height(cm)	56.37	48.08-70.98	8.24	13.66	0.36	10.25
Plant Spread (cm)	54.16	28.87-91.69	26.90	31.35	0.73	47.57
Number of Primary Branches Per Plant	7.71	06.44-09.31	6.65	14.41	0.21	6.33
Leaf Blade Length (cm)	13.19	10.24-16.71	13.31	19.13	0.48	19.09
Leaf Blade Width (cm)	6.73	05.49-08.60	11.67	19.10	0.37	14.68
Days to First Flowering	65.07	56.67-71.33	8.19	8.80	0.86	15.71
Days to 50% Flowering	73.58	64.67-80.33	7.89	8.37	0.88	15.32
Days to First Fruiting	72.67	64.00-79.33	7.30	7.92	0.85	13.88
Days to 50% Fruiting	80.83	72.67-88.00	6.59	7.35	0.80	12.18
Fruit Pedicel Length (cm)	6.73	5.14-10.84	16.26	20.87	0.60	26.10

Bendangla Imsong et al., / Theoretical Biology Forum (2023)

Fruit Length (cm)	15.88	8.94-22.13	10.15	24.93	0.16	8.51
Fruit Circumference (cm)	13.53	7.11-21.39	25.89	30.72	0.71	44.93
Number of Fruits Per Plant	52.30	32.00-82.00	24.74	26.44	0.87	47.71
Fruit Weight(g)	88.18	29.52-152.24	38.44	42.36	0.82	71.87
Fruit Volume (cc)	81.55	16.67-179.78	42.66	44.96	0.90	83.38
Fruit Yield Per Plant(kg)	2.57	01.35-03.98	32.32	36.58	0.78	58.80

Table 5: Path analysis of the 16 traits of 23 brinjal genotypes

Characters	PH	PS	NPBPP	LBL	LBW	DFF	D50F	DFFr	D50Fr	FPL	FL	FC	NFPP	FW	FV	correl
РН	0.110	0.021	0.018	0.022	0.001	1.261	0.123	- 0.159	0.662	0.100	0.017	0.002	0.030	0.054	0.005	0.68**
PS	0.013	0.186	0.042	0.022	0.033	0.343	0.037	0.042	0.158	0.009	0.047	0.003	0.009	0.098	0.022	0.45**
NPBPP	0.024	0.095	0.082	0.023	0.026	0.734	0.073	0.090	0.397	0.016	0.011	0.005	0.001	0.108	0.035	0.57**
LBL	0.048	0.083	0.039	0.050	0.039	0.680	0.067	- 0.091	0.372	0.052	0.022	0.002	0.014	0.061	0.023	0.54**
LBW	0.002	0.107	0.037	0.034	0.057	0.115	0.009	0.015	0.084	0.027	0.079	0.006	0.017	0.083	0.052	0.290
DFF	0.068	0.031	-0.029	0.016	0.003	2.064	0.198	0.261	1.082	0.020	0.012	0.003	0.037	0.089	_ 0.027	-0.820
D50F	0.068	0.034	-0.030	0.017	0.003	_ 2.063	0.199	0.261	1.082	0.024	0.009	0.003	0.037	0.090	- 0.027	-0.830
DFFr	0.067	0.029	-0.028	0.017	0.003	2.055	0.198	0.263	1.091	0.025	0.006	0.003	0.037	0.086	0.028	-0.810
D50Fr	0.066	0.027	-0.030	0.017	0.004	2.031	0.195	0.261	1.100	0.024	0.004	0.002	0.035	0.086	0.030	-0.790
FPL	0.058	0.009	0.007	0.014	0.008	0.221	0.025	0.034	0.136	0.190	0.006	0.000	0.008	0.024	0.019	0.360
FL	0.006	0.029	0.003	0.004	0.015	0.086	0.006	0.005	0.014	0.004	0.296	0.001	0.019	0.042	0.074	-0.060
FC	0.014	0.039	0.025	0.007	0.021	0.392	0.039	0.043	0.147	0.005	0.017	0.016	0.007	0.074	0.093	0.390
NFPP	0.049	0.025	0.001	0.011	0.015	1.137	0.110	0.145	0.577	0.023	0.083	0.002	0.067	0.037	0.126	0.46*
FW	0.032	0.097	0.047	0.016	0.025	0.980	0.096	0.121	0.507	0.024	0.067	0.006	0.013	0.187	0.018	0.64**
FV	0.003	0.019	0.013	0.005	0.014	0.261	0.024	0.034	0.152	0.017	0.101	0.007	0.039	0.015	0.217	0.160
	Residual are 0.03294															

Table 6: Wilks' Lamda for testing the simultaneous significance of mean difference and Analysis of dispersion

WILKS TEST										
Determinant of Error Matrix1.51E+15										
Determinant	of Error + Variety	v Matrix	0.00E+00							
Wilk's Crite	erion									
М	45.5V statistics	0								
Degree of Freedom	352Probability	1								
		ANOVA for D	ISPERSION							
Source of Variations	df	Sum of Squares	Mean Squares	F Ratio	Probability					
Varieties	22	-1.51E+15	-6.85E+13	-1.96E+00	0.02982 *					
Error	43	1.51E+15	3.51E+13							
Total	65	0.00E+00	0.00E+00							

Table 7: Distribution of the 23 genotypes into 5 different Tocher's clusters

Cluster	Number of notypes	Name of Genotypes
Cluster I	17	ABB5(1), MZ1, Hashim Local, MLC-1, Tezpur Local, Nabaneeta, ML2, ABB5(2),
Cluster I		M1, Singimari Local Long, SM-6-7, MLC-3
Cluster II	4	Longai Oblong, Balijana, Green Streaked, HRS 4
Cluster III	4	KB4, Barpeta, M2, JC1
Cluster IV	2	Longai Long, LPL
Cluster V	1	Longai Purple Oblong

Table 8: Intra (bold) and inter (above diagonal) distances D2 among the 5 different Tocher's clusters

Cluster	Ι	II	III	IV	V
Ι	55.53	182.03	272.78	284.76	255.94
II		53.62	143.89	176.22	124.79
III			72.07	329.67	198.33
IV				109.55	204.7
V					0

Table 9: Mean values for the different Tocher's clusters

Characters	Cluster I	Cluster II	Cluster III	Cluster IV	Cluster V	% contribution to divergence
Plant Height (cm)	52.60	61.66	61.19	55.53	62.74	0.60
Plant spread (cm)	48.26	72.67	57.65	58.22	28.87	1.14
Number of primary branches per plant	7.38	8.65	7.67	7.86	7.66	0.26
Leaf blade length (cm)	12.32	15.16	13.93	13.08	13.18	0.72
Leaf blade width (cm)	6.61	7.93	6.05	6.40	6.74	0.31
Days to first flowering	69.75	62.33	59.33	57.50	58.00	39.60
Days to 50% flowering	78.72	70.33	67.33	65.50	66.00	46.70
Days to first fruiting	77.33	70.00	66.92	64.84	66.00	0.32
Days to 50% fruiting	85.50	78.25	75.00	73.00	74.00	0.23
Fruit pedicel length (cm)	6.40	7.51	6.90	6.96	6.60	0.90
Fruit length (cm)	16.20	15.27	14.42	19.76	14.91	0.00
Fruit circum. (cm)	12.70	17.45	10.92	12.27	20.70	1.15
Number of fruits per plant	45.25	49.83	77.83	46.00	57.33	2.28
Fruit weight (g)	70.50	125.66	99.68	100.49	79.79	1.02
Fruit volume (cc)	79.07	94.30	33.08	144.73	127.67	3.76
Fruit yield per plant (kg)	1.81	3.69	3.23	3.16	3.31	0.00

Table 10: Eigen value, contribution of variability and factor loadings for the principal component

	Principle component (PC)			
	PC1	PC2	PC3	PC4
Eigenvalues	6.54	2.869	1.695	1.312
Proportion	0.409	0.179	0.106	0.082
Cumulative Proportion	0.409	0.588	0.694	0.776
Characters	Factor loading value after varimax rotation			
Plant Height (cm)	0.277	-0.116	0.094	0.422
Plant spread (cm)	0.16	0.314	0.353	-0.251
Number of primary branches per plant	0.22	0.282	0.097	-0.178
Leaf blade length (cm)	0.221	0.246	0.269	0.214
Leaf blade width (cm)	0.092	0.506	0.184	0.053
Days to first flowering	-0.36	0.167	0.167	0.086
Days to 50% flowering	-0.363	0.161	0.155	0.079
Days to first fruiting	-0.359	0.173	0.16	0.064
Days to 50% fruiting	-0.354	0.178	0.163	0.065
Fruit pedicel length (cm)	0.111	0.033	0.153	0.727
Fruit length (cm)	0.016	0.245	-0.277	0.037
Fruit circum. (cm)	0.124	0.272	-0.249	-0.116
Number of fruits per plant	0.207	-0.338	0.352	-0.112
Fruit weight (g)	0.258	0.231	0.052	-0.225
Fruit volume (cc)	0.05	0.269	-0.597	0.217
Fruit yield per plant (kg)	0.371	0.047	0.035	0.053

Table 11: First two Principle Component Score

Genotype	PC1	PC2	Genotype	PC1	PC2
Green Streaked	0.873	1.446	Barpeta	0.743	-1.732
SLL	-0.752	1.011	Naboneeta	-0.993	-0.185
Longai Oblong	1.333	1.126	M1	-0.981	-0.181
Longai Long	0.802	0.257	M2	0.139	-2.29
HRS 4	0.741	1.497	ML2	-0.893	-1.208
Hashim Local	-1.08	-0.157	LOP	0.957	-0.515
Balijana	1.259	0.3	LLP	1.031	-0.209
ABB5(1)	-0.398	1.305	MLC-1	-1.098	-0.096

ABB5(2)	-0.875	-0.147	MLC-3	-0.947	0.109
KB4	1.346	-0.082	JC1	1.519	-1.205
Tezpur Local	-0.871	0.334	SM-6-7	-1.043	-0.585
MZ1	-0.814	1.208			

Figure 1: Pearson correlation of 16 traits of 23 brinjal genotypes of Assam

Figure 2: Distribution of genotypes and variables across first two components

Reference

- 1. Kwon YI, Apostolidis E, Shetty K (2008) In vitro studies of eggplant (Solanum melongena) phenolics as inhibitors of key enzymes relevant for type 2 diabetes and hypertension. Bioresource Technology 99(8): 2981-8.
- 2. Rodriguez-Jimenez JR, Amaya-Guerra CA, Baez-Gonzalez JG, Aguilera-Gonzalez C, Urias-Orona V, Nino-Medina G (2018) Physicochemical, functional, and nutraceutical properties of eggplant flours obtained by different drying methods. Molec 23(12): 3210.
- 3. Kumar G, Meena BL, Kar R, Tiwari SK, Gangopadhyay KK, Bisht IS, Mahajan RK (2008) Morphological diversity in brinjal (Solanum melongena L.) germplasm accessions. Plant Genetic Resources 6(3): 232-6.
- 4. Mistry CR, Kathiria KB, Sabolu S, Kumar S (2018) Heterosis and inbreeding depression for fruit yield attributing traits in eggplant. Current Plant Biology 16: 27-31.
- 5. Singh RK, Chaudhary BD (1985) Biometrical methods in quantitative genetic analysis. Kalyani Publishers, New Delhi.
- 6. Senapati N, Mishra HN, Bhoi MK, Dash SK, Prasad G (2009) Genetic variability and divergence studies in brinjal (Solanum melongena L.). Vegetable Science 36(2): 150-154.
- 7. Shafeeq A (2005) Heterosis and combining ability studies in brinjal (Solanum melongena L.). M. Sc. (Agri.) Thesis, University of Agricultural Sciences, Dharwad.
- 8. Kushwah S, Bandhyopadhya BB (2005) Variability and correlation studies in brinjal. Indian Journal of Horticulture 62(2): 210-2.
- 9. Mohanty BK (1999) Genetic variability, character association and path analysis in brinjal. Prog Hort 31(1/2): 23-28.
- Chithra K, Devaraju M, Srinivasa V, Varalakshmi B, Asha AB (2021) Genetic Investigation in Segregating Generation of Brinjal (Solanum melongena L.). National Academy Science Letters 1-4.
- 11. Surabhi S, Kant K, Akhtar S, Kumari N, Chattopadhyay T, Kumar R (2020) Genetic Variability in Summer Brinjal (*Solanum melongena* L.). Intern J Pl Soil Sci 32(14): 44-50.
- Samlind sujin G, Karuppaiah P, Manivannan K (2017) Genetic variability and correlation studies in brinjal (Solanum melongena L.). International Journal of Plant Sciences (Muzaffarnagar) 12(1): 21-7.
- Nayak BR, Nagre PK (2013) Genetic variability and correlation studies in brinjal (*Solanum melongena* L.). Internat J Appl Biol & Pharmaceut Technol 4(4): 211-215.

- 14. Patel K, Patel NB, Patel AI, Rathod H, Patel D (2015) Study of variability, correlation and path analysis in brinjal (Solanum melongena L.). The bioscan 10(4): 2037-42.
- 15. Tripathy B, Dhananjay S, Jangde BP, Bairwa PL (2017) Genetic variability and heritability studies in brinjal (*Solanum melongena* L.). J Pharmacog Phytochem 10: 109-116.
- 16. Mondal R, Banerjee S, Maurya PK, Bhattacharjee T, Dutta S, Dutta T, Lalramhlimi B, Mukherjee D, Brati Acharya SK, Islam M, Saha S, Chattopadhyay A, Hazra P (2020) Morphological and Genetic Variations among Advance Breeding Lines and Varieties of Brinjal Grown in Eastern Gangetic Plains of India. Int J Curr Microbiol App Sci 9(4): 2008-2028.
- 17. Lalramhlimi B, Dutta T, Jamir I, Maurya PK, Bhattacharjee T, Banerjee S, Chatterjee S, Mandal AK, Chattopadhyay A (2019) Choosing of brinjal parents for future breeding aiming at bacterial wilt disease tolerance. Int J Curr Microbiol Appl Sci 8(6):2370-90.
- 18. Banerjee S, Verma A, Bisht YS, Maurya P, Jamir I, Mondal S, Bhattacharjee T, Chattopadhyay A (2018) Genetic variability, correlation coefficient and path coefficient analysis in brinjal germplasm. Int J Chem Stud 6(4): 3069-73.
- 19. Songsri P, Joglloy S, Kesmala T, Vorasoot N, Akkasaeng CPA, Holbrook C (2008) Heritability of drought resistance traits and correlation of drought resistance and agronomic traits in peanut. Crop Sci 48: 2245-2253.
- 20. Dudley JW, Moll RH (1969) Interpretation and use of estimates of heritability and genetic variances in plant breeding 1. Crop science 9(3): 257-62.
- 21. Dutta T, Bhattacharjee T, Banerjee S, Maurya PK, Dutta S, Chattopadhyay A 2018) Studies on genetic variability and identification of selection indices in brinjal (Solanum melongena L.). Journal of Pharmacognosy and Phytochemistry 7(5): 1259-64.
- 22. Singh A, Nandan R, Singh P (2014) Genetic variability and association analysis in rice germplasm under rainfed conditions. Crop Res 47: 2.
- Saha S, Haq ME, Parveen S, Mahmud F, Chowdhury SR, Harun-Ur-Rashid M (2019) Variability, correlation and path coefficient analysis: Principle tools to explore genotypes of brinjal (Solanum melongena L.). Asian J Biotechnol Genet Eng 2(3): 1-9.
- 24. Patil SV, Gangaprasad S, Kumar BMD (2020) Correlation studies and path analysis for yield and attributing characters in brinjal (*Solanum melongena* L.). Intern J Curr Microbio Applied Sci 9(2): 619-625.
- 25. Mishra SV, Warade SD, Nayakwadi MB (2007) Correlation and path analysis in brinjal. J Maharashtra Agric Univ 32(1): 74-76.
- 26. Lohakare AS, Dod VM, Peshattiwar PD (2008) Correlation and path analysis studies in green fruited brinjal. Asian Journal of Horticulture 3(1): 173-5.
- 27. Rao CR (1952) In Advanced Statistical Methods in Biometrical Research. John Wiley and Sons, New Delhi. pp.51.

- 28. Sindhuja K, Vinithra S, Senthilkumar N, Senthilkumar P, Ponsiva ST, Barath Kumar TR, Thirugnanakumar S, Studies on genetic diversity in brinjal (*Solanum melongena* L.). Electr J Pl Breed 10(4): 1554-1559.
- 29. Nand N, Adarsh A, Kumar A, Akhtar S, Kumar R, Ray PK (2018) Morphological characterization of different genotype of brinjal (Solanum melongena L.). International Journal of Current Microbiology and Applied Sciences 7(1): 2218-26.
- Bhushan A, Samnotra RK, Kumar S (2018) Genetic Divergence Studies in Brinjal (Solanum melongena L.) under Subtropical Plains of North-Western Himalayan Region. Int J Curr Microbiol App Sci 7(6): 1647-53
- Saurabh R. Ravinder K, Munshi AD, Manjusha V (2011) Breeding potential of brinjal genotypes using D² analysis. Ind J Hort 68(3): 328-331.
- 32. Chandramohan BR, Patil RV (2004) Genetic divergence in brinjal. Veg Sci 31: 125-128.
- Mehta DR, Golani IJ, Pandya HM, Patel RK, Naliyadhara MV (2004) Genetic diversity in brinjal (Solanum melongena L.). Veg Sci 31(2): 142-5.
- 34. Vidya C, Kumar N (2014) Genetic divergence in brinjal (Solanum melongena L.). The Ecoscan 6: 197-200.
- 35. Maji AT, Shaibu AA (2012) Application of principal component analysis for rice germplasm characterization and evaluation. Journal of Plant Breeding and Crop Science 4(6): 87-93.
- 36. Mahendran R, Veerabadhiran P, Robin S, Raveendran M (2015) Principal component analysis of rice germplasm accessions under high temperature stress. International Journal of Agricultural Science and Research (IJASR) 5(3): 355-9.
- Ullah S, Ijaz U, Iqbal Shah T, Najeebullah M, Niaz S (2014) Association and genetic assessment in brinjal. European J Biotech Biosci 2(5): 41-45.
- Quamruzzaman AKM, Rashid MA, Ahmad S, Moniruzzaman M (2009) Genetic divergence analysis in eggplant (Solanum melongena L.). Bangladesh J Agric Res 34: 705-712
- Burton GW (1952) Quantitative inheritance in grasses. Proceeding 6th International Grass Land Congress 1:227-283.
- 40. Hanson C H, Robinson HF, Comstock RE (1956) Biometrical studies of yield in segregating populations of Korean lespedeza 1. Agronomy journal 48(6): 268-72.
- 41. Allard RW (1960) *Principles of Plant Breeding*.1st Eds. John Wiley and Sons, Inc. New York, America.
- 42. Cham Bill E (2011) Tropical solasodine rhamnosyl glycosides derived from the eggplant treats large skin cancers: two case reports. Intern J Clinic Med 2: 473-477.